Китайцы научились моделировать масштабные квантовые процессы на классических компьютерах

Квантовая революция подкралась откуда не ждали — китайские инженеры сделали, казалось бы, невозможное: на классическом суперкомпьютере они запустили квантовую симуляцию сложных химических процессов, чего ранее ожидали лишь с появлением квантовых компьютеров. В этом им помогла нейросеть, обученная работать с квантовыми уравнениями.

Hollow Knight: Silksong — песнь страданий и радостей. Рецензия

HUAWEI FreeArc: вероятно, самые удобные TWS-наушники

Фитнес-браслет HUAWEI Band 10: настоящий металл

Пять причин полюбить HONOR X8c

Пять причин полюбить HONOR Magic7 Pro

Пять причин полюбить HONOR Pad V9

Почему ИИ никак не сесть на безматричную диету

Обзор умных часов HUAWEI WATCH 5: часы юбилейные

Значительного прорыва в квантовой химии добились китайские специалисты из компании Sunway, которые показали успешное моделирование сложного поведения молекул на классическом суперкомпьютере Oceanlite с привлечением к решению задачи искусственного интеллекта. Традиционно такие симуляции требуют огромной вычислительной мощности, часто недоступной даже для мощнейших в мире вычислительных платформ из-за экспоненциального роста числа квантовых состояний. Однако привлечение нейронных сетей позволило преодолеть эти ограничения, обработав поведение почти «настоящих» молекул с десятками электронов и более чем 100 спиновыми орбиталями — функциями спиновых координат, иначе говоря, комплексной информацией о спине электрона и его положении в пространстве в электронном облаке в составе молекулы.

Тем самым исследователи показали, что для квантовой физики и химии вовсе необязательно ждать пришествия квантовых компьютеров. При определённом умении работать с квантовым миром можно делать это уже сегодня.

В квантовой механике состояние системы описывается волновой функцией Ψ, которая определяет все возможные конфигурации частиц — от позиций и спинов электронов до энергетических уровней и вероятностей. С ростом числа частиц пространство состояний экспоненциально расширяется, делая точное моделирование на классических компьютерах практически невозможным и вынуждая учёных прибегать к упрощениям. Упрощения заставляют балансировать между точностью симуляции процессов и требуемыми для расчётов ресурсами. На современных суперкомпьютерах высочайшей точности можно достичь лишь при моделировании совсем простых молекул, что не даёт развернуться для научных прорывов.

Тогда китайские инженеры начали рассматривать вариант стыка ИИ и квантовых симуляций, что привело к разработке нейронных сетей квантовых состояний — NNQS. Эта технология позволила сочетать масштабируемость машинного обучения с квантовой точностью. Тем самым появилась возможность на обычной системе моделировать многоэлектронные молекулы с сильными корреляциями, в которых взаимодействуют десятки и даже сотни спиновых орбиталей.

Нейронную сеть обучили предсказывать волновую функцию для моделирования молекулы со 120 спиновыми орбиталями, что стало самой масштабной симуляцией на классическом компьютере — пусть даже с приставкой «супер». Сеть оценивала вероятные положения электронов, вычисляя локальные энергии и корректируя параметры до соответствия реальной квантовой структуре. Этот метод позволил симулировать динамику электронов в сложных молекулах, открывая путь к анализу процессов, ранее недоступных для вычислений.

Расчёты были проделаны на суперкомпьютере Oceanlite, построенном на 384-ядерных процессорах Sunway SW26010-Pro. Нюанс в том, что эта система создавалась для высокопроизводительной обработки данных, а не для ИИ. Для «подселения» ИИ на непривычную для него вычислительную архитектуру пришлось адаптировать программное обеспечение, чтобы обеспечить наивысший параллелизм и оптимальную загрузку всех миллионов ядер платформы. Оптимизация была проведена настолько блестяще, что обеспечила 92 % сильного и 98 % слабого масштабирования задач при подгонке «железа» под программную нагрузку.

В целом китайская классическая платформа справилась с химической симуляцией молекул со 120 спиновыми орбиталями — немыслимый ранее масштаб для квантовой симуляции на классических платформах. Без лишней скромности учёные заявили о прорыве для ИИ в квантовом моделировании. И у этого будут последствия. Надеемся, хорошие.

Оцените статью
Tgmaster.ru - Простые ответы на сложные вопросы